

Experiment 2 — Ohm's Law Relationships EL 111 - DC Fundamentals

By: Walter Banzhaf, E.K. Smith, and Winfield Young University of Hartford Ward College of Technology

Objectives:

- 1. For the student to verify Ohm's Law by calculating, and then by measuring voltage, current and resistance, and then comparing the calculated and measured results.
- 2. For the student to verify Ohm's Law relationships by increasing one quantity while holding the second quantity constant, then measuring and calculating the effect on the third quantity.

Equipment and Parts:

- Meters: Agilent 34401A Digital Multimeter (DMM), Milliammeter or Handheld MM such as the Agilent 971A
- Power Supply: Agilent E3631A DC power supply
- Resistors: one of each size 3.6 k Ω , 6.8 k Ω , 9.1 k Ω

Information:

The three forms of Ohm's Law are:
$$I = \frac{E}{R}$$
, $E = IR$ and $R = \frac{E}{I}$

The procedures in this experiment will have the student verify these formulas by comparing measured data with calculated data. Allow for a reasonable tolerance in your data. For example: Measured voltage = 15 V; calculated voltage = 14.8 V. To compare these, we use [(measured - calculated)/calculated]*100%:

$$percent \ error = \left[\frac{15V - 14.8V}{14.8V}\right] 100 \ \% = +1.4 \ \%$$

Due to the accuracy of the measurement instruments (digital voltmeter, digital ohmmeter about $\pm 1\%$; analog ammeter about $\pm 3\%$), measurements in the DC laboratory that agree within $\pm 5\%$ may be considered equal for most practical purposes.

Procedures:

1. Perform the following steps to verify that

CURRENT = VOLTAGE DIVIDED BY RESISTANCE.

a. Measure the resistance of the 6.8 k Ω (color-coded value) resistor with the DMM.

R1_{measured}:_____

b. Connect the circuit in Figure 1.

- c. Adjust the power supply voltage to 15.0 V using the DMM set on its DC voltage mode.
- d. Measure and record the voltage across the resistor.

- e. Look carefully at Figure 2: the multimeter is *incorrectly measuring VR1, since it will read both the voltage across R1 AND the voltage across the ammeter.* Figure 3 shows the correct way to measure VR1. Make sure that the voltage across R1 is still 15.0 V (it *MAY* have dropped slightly due to the milliammeter).
- f. Measure and record the current through R1. $I_{R1} =$ _____
- g. Using the measured values of voltage and resistance, calculate the current through R₁ using Ohm's Law. <u>Show calculations in the space below</u>.

$$I = \frac{E}{R} = \frac{V}{\Omega} = A$$

I_{R1} =_____

V_{R1}:

h. What conclusion can you make from these procedures?

2.	Pe	form the following steps to verify that
	a.	RESISTANCE EQUALS VOLTAGE DIVIDED BY CURRENT: Connect the same circuit as in Figure 3, except change the value of resistance of 3.6 k Ω (color-coded value).
	b.	Measure and record the voltage across R1 and the current flow through R1.
		E _{R1} = I _{R1} =
	C.	<u>Calculate</u> the resistance of R1 using the measured values of E_{R1} and I_{R1} with Ohm's Law. Show calculation.
		R1 =
	d.	Remove R1 from the circuit. Measure and record the resistance of R1 using the multimeter.
	e.	R1 =
	f.	What conclusion can you make from these procedures?
	_	
3.	Pe	rform the following procedures to verify that VOLTAGE EQUALS CURRENT TIMES RESISTANCE.
	a.	Connect the circuit in Figure 3, except change the resistor to 9.1 k Ω . (color-coded value)
	b.	Measure the resistance of this resistor making sure that the resistor is removed from the circuit.
		R1 =
	C.	Reinsert the resistor into the circuit and measure the current through the resistor.
		l =
	d.	Calculate, using Ohm's law, the resistor voltage using the measured values of resistance and current. Show calculation below.

E=I*R=()A*()Ω= V

c. Change the resistor value to 6.8 k Ω , and again measure the current through the resistor. Record.

l =_____

EducatorsCorner.com Experiments

d. Based on the results of this procedure, what conclusion can be made about the relationship between resistance and current for a fixed value of voltage?

6. Perform the following procedures to verify that

IF CURRENT IS HELD CONSTANT, INCREASING THE RESISTANCE WILL INCREASE THE VOLTAGE.

- a. Connect the circuit in Figure 3, using R = 6.8 k Ω . Adjust the source voltage so that the current through the resistor measures 2.0 mA.
- b. Measure the source voltage. Record.

E_{R1} = _____

- c. Change the resistor value to 9.1 k Ω . Again adjust the source voltage until the current through the resistor measures 2.0mA.
- d. Measure the source voltage. Record.

E_{R1} = _____

e. Based on the results of this procedure, what conclusion can be made about the relationship between resistance and voltage for a fixed value of current?